
IForm ApprovedAD-A243 296 rATION PAG,- OA. 07040188

FUPe eeiiI III!) for1 reiii rUnxiorm mefdlmg Szmlfl data 00VW wtw td
jrdel Wirrwate or anj o~the uam$ ofIN collectin of dWomace i idat sUgguszmmu far f wdn oWai

asnDavie HIoway, Suke 1204. Akon. VA 222C24302 ar to ton Office at hiaimabn and Regay Mlairs Mfice ol
ma

1. AGENCY USE ONLY (Leave Blank) 2. RFI-'uNT DATE 3. REPORT TYPE AND DATES COVERED

Final: 09 Nob 1990 to 01 Jun 1993

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Alsys, AlsyCOMP_01 1, Version 5.3, VAX 6210 under VMS 5.2 (Host) to Motorola
MVME135-1 (68020/68881)with ARTK Version 5.3 (bare machine)(Target),
901127A1.11069

6. AUTHOR(S) -

AFNOR, Paris, FRANCE - , "

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(E4.. .k S. PERFORMING ORGANIZATION
AFNOR ADDRES . REPORT NUMBER
Tour Europe, Cedex 7 AVF-VSR-AFNOR-90-14

7-92080 Paris La Defense
France

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Washington, D.C. 20301 -3081

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Alsys, AlsyCOMP_011, Version 5.3, VAX 6210 under VMS 5.2 (Host) to Motorola MVME1 35-1 (68020/68881)with ARTK
Version 5.3 (bare machine)(Target), ACVC1.11

91-17740

14, SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICECODE

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550 Standard Form 298, (Rev 2-89)Prescribed by ANSI Std. 239-128

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11.
Testing was completed on 1990-11-27.

Compiler Name and Version: AlsyCOMP_011 Version 5.3

Host Computer System: VAX 6210 under VMS 5.2

Target Computer System: Motorola MVME135-1 (68020/68881)
with ARTK Version 5.3 (bare machine)

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
901127A1.11069 is awarded to Alsys. This certificate
expires on 1992-06-01.

This report has been reviewed and is approved.

AFNOR"Q'
Philippe Alphonse
Tour Europe
Cedex 7
F-92049 Paris la Defense

Ada Validation Organization a,"
Director-, Computer & Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

A3 Joint Program Office ..

Dr. John Solomond, Director
Department of Defense
Washington DC 20301

AVF Control Number: AVF-VSR-AFNOR-90-14

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 901127A1.11069
Alsys

AlsyCOMP_011 Version 5.3
VAX 6210 Host and Motorola MVME135-1 (68020/68881) Target

Prepared By:
AFNOR

Tour Europe
Cedex 7

F-92049 Paris la D~fense

DECLARATION OF CONFORMANCE

Customer: Alsys

Certificate Awardee: Alsys

Ada Validation Facility: AFNOR

ACVC Version: 1.11

Ada Implementation

Ada Compiler Name and Version: AlsyCOMP_011 Version 5.3

Host Computer System: VAX 6210 under VMS 5.2

Target Computer System: Motorola MVME135-1 (68020/68881)
with ARTK Version 5.3 (bare machine)

Declaration:

I the undersigned, declare that I have no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A
ISO 8652-1987 in the implementation listed above.

-9 NOV. ft
Etienne Morel Date
Managing Director
Alsys

CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-3

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-2
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures (Pro90] against the Ada Standard (Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide (UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Prograrmming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
Office, August 1990.

(UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECKFILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for

this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and (UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and

System associated software, that uses common storage for all or
part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

Conformity Fulfillment by a product, process or service of all
requirements specified.

1-3

INTRODUCTION

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 90-10-12.

E28005C B28006C C34006D B41308B C43004A C45114A
C45346A C45612B C45651A C46022A B49008A A74006A
B83022B B83022H B83025B B83025D B83026B B85001L
C83026A C83041A C97116A C98003B BA2011A CB7001A
CB7001B CB7004A CC1223A BC1226A CC1226B BC3009B
AD1BO8A BD2AO2A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2B15C BD3006A CD4022A CD4022D
CD4024B CD4024C CD4024D CD4031A CD4051D CD5111A
CD7004C ED7005D CD7005E AD7006A CD7006E AD7201A
AD7201E CD7204B BD8002A BD8004C CD9005A CD9005B
CDA201E CE2107I CE2119B CE2205B CE2405A CE3111C
CE3118A CE3411B CE3412B CE3812A CE3814A CE3902B

BD1B02B BDIBO6A C74308A BD4008A CE2117A CE2117B
CE3607B CE3607C CE3607D

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by ISO and the AJPO known as Approved Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included
as appropriate.

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAXDIGITS :

C24113L..Y C35705L..Y C35706L..Y C35707L..Y C35708L..Y C35802L..Z
C45241L..Y C45321L..Y C45421L..Y C45521L..Z C45524L..Z C45621L..Z
C45641L..Y C46012L..Z

The following 21 tests check for predefined type LONGINTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45612C C45613C C45614C C45631C C45632C
B52004D C55B07A B55B09C B86001W C86006C
CD7101F

2-1

IMPLEMENTATION DEPENDENCIES

C35702A C35713B C45423B B86001T C86006H check for predefined
type SHORTFLOAT.

C35713D B86001Z check for a predefined floating-point type with a name
other than FLOAT, SHORTFLOAT or LONGFLOAT.

C45531M..P C45532M..P check fixed-point operations for types that
require a SYSTEM.MAXMANTISSA of 47 or greater.

C45536A C46013B C46031B C46033B C46034B contain 'SMALL representation
clauses which are not powers of two or ten.

C45624A and C45624B check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types; for this
implementation, MACHINEOVERFLOWS is TRUE.

C86001F recompiles package SYSTEM, making package TEXT 10, and hence
package REPORT, obsolete. For this implementation, the package TEXT_10
is dependent upon package SYSTEM.

B86001Y checks for a predefined fixed-point type other than DURATION.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2A53A checks operations of a fixed-point type for which a length
clause specifies a power-of-ten type'small. [See 2.3.]

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

BD800lA, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions.

CE2103A, CE2103B, and CE3107A expect that NAMEERROR is raised when an
attempt is made to create a file with an illegal name; this implementation
does not support the creation of external files and so raises USEERROR.
(See 2.3.)

2-2

IMPLEMENTATION DEPENDENCIES

The following 265 tests check for sequential, text, and direct access
files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2)
CE2120A..B (2) CE2201A..C (3) EE2201D..E (2) CE2201F..N (9)
CE2203A CE2204A..D (4) CE2205A CE2206A
CE2208B CE2401A..C (3) EE2401D CE2401E..F (2)
EE2401G CE2401H..L (5) CE2403A CE2404A..B (2)
CE2405B CE2406A CE2407A..B (2) CE2408A..B (2)
CE2409A..B (2) CE2410A..B (2) CE2411A CE3102A..C (3)
CE3102F..H (3) CE3102J..K (2) CE3103A CE3104A..C (3)
CE3106A..B (2) CE3107B CE3108A..B (2) CE3109A
CE3110A CE3111A..B (2) CE3111D..E (2) CE3112A..D (4)
CE3114A..B (2) CE3115A CE3116A CE3119A
EE3203A EE3204A CE3207A CE3208A
CE3301A EE3301B CE3302A CE3304A
CE3305A CE3401A CE3402A EE3402B
CE3402C..D (2) CE3403A..C (3) CE3403E..F (2) CE3404B..D (3)
CE3405A EE3405B CE3405C..D (2) CE3406A..D (4)
CE3407A..C (3) CE3408A..C (3) CE3409A CE3409C..E (3)
EE3409F CE3410A CE3410C..E (3) EE341OF
CE3411A CE3411C CE3412A EE3412C
CE3413A..C (3) CE3414A CE3602A..D (4) CE3603A
CE3604A..B (2) CE3605A..E (5) CE3606A..B (2)
CE3704A..F (6) CE3704M..O (3) CE3705A..E (5) CE3706D
CE3706F..G (2) CE3804A..P (16) CE3805A..B (2) CE3806A..B (2)
CE3806D..E (2) CE3806G..H (2) CE3904A..B (2) CE3905A..C (3)
CE3905L CE3906A..C (3) CE3906E..F (2)

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 28 tests.

The following 22 tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests:

B23004A B24007A B24009A B28003A B32202A B32202B B32202C B36307A
B37004A B61012A B62001B B74304B B74304C B74401F B74401R B91004A
B95032A B95069A B95069B BA1101B BC2001D BC3009C

2-3

IMPLEMENTATION DEPENDENCIES

BA2001E was graded passed by Evaluation Modification as directed by the
AVO. The test expects that duplicate names of subunits with a common
ancestor will be detected as compilation errors; this implementation
detects the errors at link time, and the AVO ruled that this behavior
is acceptable.

EA3004D was graded passed by Evaluation and Processing Modification as
directed by the AVO. The test requires that either pragma INLINE is
obeyed for the invocation of a function in each of three contexts and
that thus three library units are made obsolete by the re-compilation
of the inlined function's body, or else the pragma is ignored completely.
This implementation obeys the pragma except when the invocation is within
a package specification. When the test's files are processed in the
given order, only two units are made obsolete; thus, the expected error
at line 27 of file EA3004D6M is not valid and is not flagged. To confirm
that indeed the pragma is not obeyed in this one case, the test was also
processed with the files re-ordered so that the re-compilation follows
only the package declaration (and thus the other library units will not
be made obsolete, as they are compiled later); a "NOT APPLICABLE" result
was produced, as expected. The revised order of files was 0-1-4-5-2-3-6.

CD2A53A was graded inapplicable by Evaluation Modification as directed by the
AVO. The test contains a specification of power-of-10 value as small for a
fixed-point type. The AVO ruled that, under ACVC 1.11, support of decimal smalls
may be omitted.

CE2103A, CE2103B, and CE3107A were graded inapplicable by Evaluation
Modification as directeC the AVO. The tests abort with an unhandled
exception when USE ERROR is raised on the attempt to create an external
file, which is acceptable behavior because this implementation does
not support the creation of external files (cf AI-00332).

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The configuration in which the testing was performed is described
by the following designations of hardware and software components:

Host computer: VAX 6210
Host operating system: VMS 5.2

Target computer:
Board: Motorola MVME135-1
CPU: Motorola MC68020
Coprocessor: Motorola MC68881
I/O: Motorola MC68661
Timer: Zilog Z8036A
Bus: VMEbus
Memory size: 1 Mb

Downloader: AdaTransfer, Version 5.3

Communication link: RS 232 serial connection

For a point of contact for technical information about this Ada
implementation system, see:

Didier De Bie
Alsys SA
29, Avenue Lucien-Rene Duchesne
78170 La Celle Saint-Cloud
France

For a point of contact for sales information about this Ada implementation
system, see:

Bob Lamkin Philippe Loutrel
Alsys Inc Alsys SA
67 South Bedford Street 29, Avenue Lucien-Rene Duchesne
Burlington 78170 La Celle Saint-Cloud
MA 01803-5152 France
U.S.A.

John Stewart Kurt Wey
Alsys Ltd Alsys Gmbh
Partridge House Am Ruppurer Schcss 7
Newtown Road D-7500 Karlsruhe 51
Henley-on-Thames Germany
Oxon, RG9 IEN
U.K.

3-1

PROCESSING INFORMATION

Jun Shimura Orjan Leringe
Alsys-KKE Co. Ltd Alys AB
Techno-Wave 16F Patron Pehr Vag 10
1-1-25 Shin-Urashima-cho Box 1085
Kanagawa-Ku 141 22 Huddinge
Yokohama Stockholm
Japan Sweden

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro89].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to tne Ada Programming Language Standard.

a) Total Number of Applicable Tests 3563
b) Total Number of Withdrawn Tests 81
c) Processed Inapplicable Tests 60
d) Non-Processed I/O Tests 265
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 526 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

The above number of I/O tests were not processed because this
implementation does not support a file system. The above
number of floating-point tests were not processed because they used
floating-point precision exceeding that supported by the implementation.
When this compiler was tested, the tests listed in section 2.1 had
been withdrawn because of test errors.

3-2

PROCESSING INFORMATION

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler
was tested, the tests listed in section 2.1 had been withdrawn because of
test errors. The AVF determined that 526 tests were
inapplicable to this implementation. All inapplicable tests were processed
during validation testing except for 201 executable tests
that use floating-point precision exceeding that support.-d by the
implementation and 265 executable tests that use file operations not
supported by the implementation. In addition, the modified tests
mentioned in section 2.3 were also processed.

A Data Cartridge Tape containing the customized test suite (see section 1.3)
was taken on-site by the validation team for processing. The contents of
the Jata Cartridge Tape were loaded directly onto the host computer.

Arter the test files were loaded onto the host computer, the full set of

tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system by the communications link described above, and run. The results
were captured on the host computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of

the processing options for this implementation. It also indicates the
default options.

Test output, compiler and linker listings, and job logs were captured on
Data Cartridge Tape and archived at the AVF. The listings examined on-site

by the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89J. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$BIGIDI (1..V-1 => 'A', V > '1')

$BIGID2 (l..V-1 -> 'A', V-> '2')

$BIGID3 (1..V/2-> 'A') & '3' &
(1..V-1-V/2 -> 'A')

$BIGID4 (1..V/2 -> 'A') & '4' &
(1..V-l-V/2 -> 'A')

$BIGINTLIT (1..V-3 -> '0') & "298"

$BIGREALLIT (I..V-5 > '0') & "690.0"

$BIGSTRING1 "" & (1..V/2 -> 'A') & "-'

SBIGSTRING2 '"' & (1..V-l-V/2 -> 'A') & '1' & '"'

$BLANKS (1..V-20 -> '

$MAXLENINTBASED_LITERAL
"2:" & (1..V-5 -> '0') & "11:"

$MAXLENREALBASED_ LITERAL
"16:" & (1..V-7 -> '0') & "F.E:"

$MAXSTRINGLITERAL '"' & (1..V-2 -> 'A') & '"'

A-I

MACRO PARAMETERS

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

SMAXINLEN 255

ACCSIZE 32

$ALIGNMENT 2

$COUNTLAST 2147483647

SDEFAULTMEMSIZE 2**32

SDEFAULTSTORUNIT 8

SDEFAULTSYSNAME MC680X0

$DELTADOC 2#1.0#E-31

$ENTRYADDRESS INTERRUPTADDRESS

SENTRYADDRESS1 INTERRUPTADDRESSi

SENTRYADDRESS2 INTERRUPTADDRESS2

SPIELDLAST 255

SPILETERMINATOR CHARACTER' VAL(32)

$FIXEDNAME NOSUCHTYPE

$FLOATNAME NOSUCHTYPE

SFORMSTRING

$FORMSTRING2 "CANNOTRESTRICTFILECAPACITY"

SGREATERTHANDURATION 100_000.0

SGREATERTHANDURATIONBASELAST 100_000_000.0

$GREATERTHANFLOATBASELAST 2.0E128

$GREATERTHANFLOATSAFELARGE 2#1.111111111111111l111lllll#E127

A- 2

$GREATERTHANSHORTFLOATSAFELARGE 1.0E308

$HIGHPRIORITY 24

$ILLEGALEXTERNALFILENAMEl /-/*/f 1

SILLEGALEXTERNALFILENAME2 /-/*/f2

$ INAPPROPRIATELINELENGTH -1

$ INAPPROPRIATEPAGELENGTH -1

$INCLUDEPRAGMA1 PRAGMA INCLUDE ("A28006D1.TST")

$INCLUDEPRAGMA2 PRAGMA INCLUDE ("B28006n!.TST")

SINTEGERFIRST -2147483648

SINTEGERLAST 2147483647

$INTEGERLASTPLUS_1 2_147_483_648

$ INTERFACELANGUAGE C

SLESSTHANDURATION -100_000.0

SLESSTHANDURATIONBASEFIRST -100_000_000.0

SLINETERMINATOR ASCII.LF

$LOWPRIORITY 1

SMACHINECODESTATEMENT NULL;

$MACHINECODETYPE NOSUCH TYPE

SMANTISSADOC 31

SMAXDIGITS 15

SMAXINT 2147483647

SMAXINTPLUS_1 2_147_483_648

SMININT -2147483648

A- 3

$NAME SHORTSHORTINTEGER

SNAMELIST MC680X0

$NAMESPECIFICATIONi /platon2/vl. llwork/com/X2120A

$NAMESPECIFICATION2 /platori2/vl llwork/com/X2120B

$NAMESPECIFICATION3 /platon2/vl llwork/com/X3119A

$NEGBASEDINT 16#FFFFFFFE#

SNEWHEMSIZE 2**32

$NEWSTORUNIT 8

$NEWSYSNAME MC680X0

SPAGETERMINATOR ASCII.FF

$RECORDDEFINITION new INTEGER;

$ RECORDNAME NOSUCHMACHINECODETYPE

$TASKSIZE 32

$TASKSTORAGESIZE 4096

$TICK 0.02

$VARIABLEADDRESS OBJECTADDRESS

$VARIABLEADDRESS 1 OBJECTADDRESS 1

$VARIABLEADDRESS2 OBJECTADDRESS2

$YOURPRAGMA INTERFACENAME

A- 4

APPENDIX B

OPTIONS

The options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

COMPILATION SYSTEM OPTIONS

ERRORS=999: allow 999 errors before terminating compilation
(default 50).

CALLS-INLINED: allow inline insertion of code for subprograms
and take pragma INLINE into account. (default NORMAL).

REDUCTION-PARTIAL: perform some high level optimizations on
checks and loops. (default NONE).

EXPRESSIONS-PARTIAL: perform some low level optiMisations on
common subexpressions and register allocations (default NONE).

FLOAT=MC68881: Enable coprocessor (default FLOAT-SOFTWARE)

NOWARNING: Do not generate warning messages
NODETAIL: Do not include extra detail in error messages
SHOW=NONE: No banner header on listing pages, no error

summary at end of listing.
FILEWIDTH-120: Listing file has 120 characters per line
NOFILELENGTH: Unpaginated listing file

For tests rejected at compile time:
TEXT: compilation listing including full source text (with

embedded error messages)

For tests compiled without errors:
NOTEXT: compilation listing including only source text for

lines containg errors
(i.e. empty listing if no errors)

LINKER OPTIONS

FLOAT-SOFTWARE: Floating point operations are done by
software (default).

ROM=YES: program can be put in ROM (default ROM-NO)
DIRECTIVES-pgml35.cmd
SEARCH-userl35.a
KERNEL=USER: Working mode of the processor (default)
SEGMENTED-NO: Do not generate a section per compilation

unit (default).
NOWARNING: Do not generate warning messages
FILEWIDTH-80: Listing file has 80 characters per line
NOFILELENGTH: Unpaginated listing file

B-1

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type SHORT SHORT INTEGER is range -2**7..2**7-1;
type SHORTINTEGER is range -2**15..2**15-1;
type INTEGER is range -2**31..2**31-1;

type FLOAT is digits 6 range
-(2.0 - 2.0**(-23)) * 2.0**127..
+(2.0 - 2.0**(-23)) * 2.0**127;

type LONGFLOAT is digits 15 range
-(2.0 - 2.0**(-52)) * 2.0**1023..
+(2.0 - 2.0**(-52)) * 2.0**1023;

type DURATION is delta 2.0**(-14) range -86400.00..86_400.00;

end STANDARD;

C-1

Alsys Ada Compiler

APPENDIX F

for Compilers Targeted to Motorola 68K

Version 5.3

Alys S.A
29, Avenue Lucien-Reni Duchesne
78170 La Celle St. Cloud, France

Alsys Inc.
67 South Bedford Street

Burlington, MA 01803-5152 USA

Abys Ltd
Partridge House, Newtown Road

Henley-on- Thames,
Oxfordshire RG9 1EN, UK

Alsys AB
Patron Pehr Vdg 10

Box 1085
141 22 Huddinge Stockholm, Sweden

Copyright 1990 by Alsys

All rights reserved. No part of this document may be reproduced in any form or by any
means without permission in writing from Alsys.

Printed: November 9,1990

Alsys reserves the right to make changes in specifications and other information
contained in this publication without prior notice. Consult Alsys to determine whether
such changes have been made.

HP-UX is a trademark of Hewlett Packard
Sun Workstation is a registered trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T BELL LABORATORIES.
Apollo and DOMAIN are registered trademarks of Apollo Computer Inc.
AEGIS and DOMAIN/IX are registered trademarks of Apollo Computer Inc.
Macintosh, Mac, and A/UX are trademarks of Apple Computer, Inc.
Cetia, Unigraph and Unigraph/X are registered trademarks of Cetia.
ALsys, AdaWorld, AdaProbe, AdaTune, AdaXref, AdaReformat, and AdaMake are registered trademarks of
Alsys.

TABLE OF CONTENTS

PREFACE v

1 IMPLEMENTATION-DEPENDENT PRAGMAS 7

1.1 The Pragma INTERFACE 7
1.2 The Pragma INTERFACE-NAME 7
1.3 The Pragma INLINE 8
1.4 The Pragma EXPORT 8
1.5 The Pragma EXTERNAL-NAME 9
1.6 The Pragma INDENT 9
1.7 The Pragma IMPROVE 10
1.8 The other Pragmas 10
1.9 Pragmas with no Effect 10

2 IMPLEMENTATION-DEPENDENT AITRIBUTES 11

2.1 Attributes used in Record Representation Clauses 12
2.2 Limitations on the use of the Attribute ADDRESS 12
2.3 The Attribute IMPORT 12

3 THE PACKAGE SYSTEM 13

4 TYPE REPRESENTATION CLAUSES 18

4.1 Enumeration Types 18
4.2 Integer Types 19
4.3 Floating Point Types 20
4.4 Fixed Point Types 21
4.5 Access Types 22
4.6 Task Types 23
4.7 Array Types 23
4.8 Record Types 24

Table of Contents iii

5 IMPLEMENTATION-DEPENDENT COMPONENTS 28

6 ADDRESS CLAUSES 29

6.1 Address Clauses for Objects 29
6.2 Address Clauses for Program Units 29
6.3 Address Clauses for Entries 29

7 UNCHECKED CONVERSIONS 30

8 INPUT-OUTPUT CHARACTERISTICS 31

8.1 Introduction 31
8.2 The Parameter FORM 32

iv Appendix F Version 5.3

PREFACE

This is the "Appendix F, Implementation-Dependent Characteristics, of the Reference
Manual for the Ada Programming Language, ISO/8652-1987.

Prefacev

CHAPTER 1

IMPLEMENTATION-DEPENDENT PRAGMAS

1.1 The Pragma INTERFACE
Programs written in Ada can interface with external subprograms written in another

language, by use of the pragma INTERFACE. The format of the pragma is:

pragma INTERFACE (languagename, Ada subprogram name);

Thelanguagename may be Assembler, C, Fortran or Pascal depending on the
Alsys Ada compiler used (seeApplication Developer's Guide).

The Ada subprogram name is the name by which the subprogram is known in Ada.

Interfacing the Ada language with other languages is detailed in the Application
Developer's Guide.

1.2 The Pragma INTERFACE-NAME

To name the external subprogram to which an Ada subprogram is interfaced, as defined
in the other language, may require the use of non-Ada naming conventions, such as
special characters, or case sensitivity. For this purpose the implementation-dependent
pragma INTERFACENAME may be used in conjunction with the pragma INTERFACE.

pragma INTERFACE-NAME (Ada subprogramname, namestring);

The name string is a string, which denotes the name of the external subprogram as
defined in the other language. TheAda subprogram name is the name by which the
subprogram is known in Ada.

The pragma INTERFACE-NAME may be used anywhere in an Ada program where
INTERFACE is allowed (see [13.91). It must occur after the corresponding pragma
INTERFACE and within the same declarative part or package specification.

Implententation-Dependent Pragmas 7

1.3 The Pragma INLINE

Pragma INLINE is fully supported; however, it is not possible to inline a subprogram in a
declarative part.

Note that inlining facilities are also provided by use of the command COMPILE with the
option IMPROVE (see the User's Guide).

1.4 The Pragma EXPORT

The pragma EXPORT takes a language name and an Ada identifier as arguments. This
pragma allows an object defined in Ada to be visible to external programs written in the
specified language.

pragma EXPORT (languagename, Ada-identifier)

Example:

package MY_PACKAGE is

THISOBJECT: INTEGER;
pragma EXPORT (PASCAL, THISOBJECT);

end MY-PACKAGE;

Limitations on the use of pragma EXPORT

" This pragma must occur in a declarative part and applies only to objects declared in
this same declarative part, that is, generic instantiated objects or renamed objects
are excluded.

" The pragma is only to be used for objects with direct allocation mode, which are
declared in a library package. The ALSYS implementation gives indirect allocation
mode to dynamic objects, and objects that have a significant size (see Section 2.1 of
the Application Developer's Guide).

8 Appendir F Version 5.3

1.5 The Pragma EXTERNAL-NAME

To name an exported Ada object as it is identified in the other language may require the
use of non-Ada naming conventions, such as special characters, or case sensitivity. For
this purpose the implementation-dependent pragma EXTERNAL-NAME may be used in
conjunction with the pragma EXPORT:

pragma EXTERNAL NAME (Ada identifier, namestring);

The name.string is a string which denotes the name of the identifier defined in the other
language. The Ada-identifier denotes the exported Ada object.

The pragma EXTERNAL NAME may be used anywhere in an Ada program where
pragma EXPORT is allowed. It must occur after the corresponding pragma EXPORT and
within the same library package.

Example:

package MY-PACKAGE is

THISOBJECT: INTEGER;
pragma EXPORT (PASCAL, THIS OBJECT);
pragma EXTERNAL-NAME (THIS OBJECT, "ThisObject");

end MY-PACKAGE;

1.6 The Pragma INDENT

This pragma is only used by AdaReformat. This tool offers the functionalities of a
pretty-printer in an Ada environment.

The pragma is placed in the source file and interpreted by AdaReformat.

pragma INDENT(OFF) causes AdaReformat not to modify the source lines after
this pragmd.

pragma INDENT(ON) causes AdaReformat to resume its action after this pragma.

Implementation-Dependent Pragmas 9

1.7 The Pragma IMPROVE
This pragma is used to suppress implicit components from a record type.

pragma IMPROVE (TIME I SPACE, [ON = >I simple-name);

See Section 4.8 for the complete description.

1.8 The other Pragmas

Pragma PACK is discussed in detail in the section on representation clauses and records
(Chapter 4).

Pragma PRIORITY is accepted with the range of priorities running from 1 to 16 (see the
definition of the predefined package SYSTEM in Section 3). Undefined priority (no
pragma PRIORITY) is treated as though it were less than every defined priority value.

In addition to pragma SUPPRESS, it is possible to suppress all checks in a given
compilation by the use of the Compiler option CHECKS. (See Chapter 4 of the User's
Guide.)

1.9 Pragmas with no Effect

The following pragmas have no effect:

CONTROLLED

MEMORY-SIZE
STORAGE UNIT
SYSTEM NAME
OPTIMIZE

For optimization, certain facilities are provided through use of the command COMPILE
with the option IMPROVE (see the User's Guide).

10 Appendix F Version 5.3

CHAPTER 2

IMPLEMENTATION-DEPENDENT ATTRIBUTES

Throughout this chapter and the remaining chapters of this document three special types
of integer are used in the text. They are used where the number of bits used to store the
integer is important.

The three types used are defined as:

INTEGER_8; an integer stored in 8 bits,

INTEGER_16; an integer stored in 16 bits,

INTEGER_32; an integer stored in 32 bits.

and can be respectively declared, with representation clauses, thus:

type INTEGER_8 is new INTEGER range -2**7.. 2**7 -1;
for INTEGER_8'SIZE use 8;

type INTEGER 16 is new INTEGER range -2*15 .. 2"*15 -1;
for INTEGER_16'SIZE use 16;

type INTEGER_32 is new INTEGER range -2"31 .. 2"31 -1;
for INTEGER_32'SIZE use 32

The user gains complete control over the data storage by using these forms of
declaration, as opposed to those defined in package STANDARD over which the user
has no control. (Refer to Chapter 3 of this document.)

Implementation-Dependent Pragmas 11

2.1 Attributes used in Record Representation Clauses
In addition to the Representation Attributes of [13.7.21 and [13.7.3], the following five
attributes are used to form names of indirect and implicit components for use in record
representation clauses, as described in Section 4.8.

'OFFSET
'RECORDSIZE
'VARIANTINDEX
'ARRAY-DESCRIPTOR
'RECORD-DESCRIPTOR

2.2 Limitations on the use of the Attribute ADDRESS

The attribute ADDRESS is implemented for all prefixes that have meaningful addresses.

Note: The value returned by the attribute ADDRESS is undefined before the elaboration
of the subprogram body (when 'ADDRESS is applied to a subprogram).

The following entities do not have meaningful addresses and will therefore cause a
compilation error if used as prefix to ADDRESS:

a A constant that is implemented as an immediate value, i.e., does not have any space

allocated for it

0 A package specification that is not a library unit

a A package body that is not a library unit or subunit

a A function that renames an enumeration literal.

2.3 The Attribute IMPORT
This attribute is a function which takes two literal strings as arguments; the first one
denotes a language name and the second one denotes an external symbol name. It yields
the address of this external symbol. The prefix of this attribute must be
SYSTEM.ADDRESS. The value of this attribute is of the type SYSTEM.ADDRESS. The
syntax is:

SYSTEM.ADDRESS'IMPORT ("Languagename, "externalsymbolname')

12 Appendix F Version 5.3

CHAPTER 3

THE PACKAGE SYSTEM

This section contains information on the visible part of the specifitation of the package
SYSTEM

package SYSTEM is

-- Standard Ada definitions

type NAME Is (MC680XO);
SYSTEMNAME constant NAME:= MC680X0;
STORAGE-UNIT constant:= 8;
MEMORY SIZE constant:= 2**32;
MININT constant:= -(2"'31);
MAX INT constant:= 2"'31-1;
MAXDIGITS :constant:= 15 ;
MAX MANTISSA constant:= 31;
FINEDELTA :constant:= 2#1,0#e-31;
TICK :constant:= 0.02;

type ADDRESS is private,
NULLADDRESS: constant ADDRESS;

subtype PRIORITY Is INTEGER range 1..16;

Implementation-Dependent Pragmas 13

-- Address operations

function VALUE (LEFT: in STRING) return ADDRESS;

-- Converts a string into an address.
-- The string can represent either an unsigned address ie.
-- "16#XXXXXXXX#" where XXXXXXXX is in the range
-- O..FFFFFFFF, or a signed address ie.
-- "-16#XXXXXXXX#" where XXXXXXXX is in the range
-- O..7FFFFFFF.
-- A CONSTRAINTERROR is raised if the string does not conform to
-- this syntax

ADDRESS WIDTH: constant:= 3 + 8 + 1;

subtype ADDRESS STRING is STRING(..ADDRESSWIDTH);

function IMAGE(LEFT: in ADDRESS) return ADDRESS-STRING;

-- Converts an address to a string. The syntax of the returned string is
-- described in the VALUE function above. Refer to the unsigned
-- representation.

type OFFSET is range -2"*31 .. 2"'31 -1;
-- This type is used to measure a number of storage units (bytes).
-- The type is an Ada integer type.

function SAME-SEGMENT (LEFT, RIGHT: In ADDRESS)
return BOOLEAN;

---.-----------.----------------------- ..-.----------------- On a segmented architccture
the function returns TRUE if the two

addresses have the same segment value. On a non-segmented
-- architecture it always returns TRUE.--------------------------------

14 Appendix F Version 5.3

ADDRESS-ERROR: exception;

-- This exception is raised by ', < =', ">", '>=' and -' if the two
-- addresses do not have the same segment value. This exception is
-- never raised on a non-segmented machine.
-- The exception CONSTRAINTERROR can be raised by +" and "-".

function "+" (LEFT: in OFFSET; RIGHT: in ADDRESS)
return ADDRESS;

function "+" (LEFT: In ADDRESS; RIGHT: In OFFSET)
return ADDRESS;function "-" (LEFT: in ADDRESS; RIGHT: in OFFSET)
return ADDRESS; ---
-- These routines provide support to perform address computations. The

meaning of the *+" and -" operators is architecture dependent. For
example on a segmented machine the OFFSET parameter is added to,
or subtracted from the offset part of the address, the segment

-- remaining unaltered.

function "- (LEFT: In ADDRESS; RIGHT: In ADDRESS)
return OFFSET;

-- Returns the distance between the given addresses. The result is
-- signed. The exception ADDRESSERROR is raised on a segmented
-- architecture if the two addresses do not have the same segment value.

function "<" (LEFT, RIGHT: in ADDRESS)
return BOOLEAN;

function "< =" (LEFT, RIGHT: in ADDRESS)
return BOOLEAN;

function *>" (LEFT, RIGHT: in ADDRESS)
return BOOLEAN;

Implementation-Dependent Pragynas 15

function ">=" (LEFT, RIGHT: in ADDRESS)
return BOOLEAN;

Perform a comparison on addresses, or on the offset part of addresses
-- for a segmented machine. The comparison is unsigned on all
-- machines except the Transputer.

function "mod" (LEFT: in ADDRESS; RIGHT: in POSITIVE)
return NATURAL;

-- Returns the offset of LEFT relative to the memory block immediately
-- below it starting at a multiple of RIGHT storage units. On a

segmented machine, the segment part is ignored.

type ROUND 7ARECTION is (DOWN, UP);

function ROUND (VALUE: in ADDRESS;
DIRECTION : in ROUNDDIRECTION;
MODULUS: in POSITIVE) return ADDRESS;

-- Returns the given address rounded to a specific value.

generic
type TARGET Is private;

function FETCH FROMADDRESS (A: in ADDRESS)
return TARGET;

generic
type TARGET is private;

procedure ASSIGN TO ADDRESS (A: in ADDRESS;
T: in TARGET);

- These routines are provided to perform READ/WRITE operations in
-- memory. These routines may give unexpected results if used with
-- unconstrained types.

16 Appendix F Version 5.3

type OBJECT LENGTH is range 0.. 2**31 - 1;
-- This type is used to designate the size of an object in storage units.

procedure MOVE (TO: in ADDRESS;
FROM : in ADDRESS;
LENGTH : in OBJECTLENGTH);

-- Copies LENGTH storage units starting at the address FROM to the
address TO. The source and destination may overlap.

-- Use of this procedure with optimizers may lead to unexpected
-- results.

private

-- private part of the system

end SYSTEM;

Implementation-Dependent Pragmas 17

CHAPTER 4

TYPE REPRESENTATION CLAUSES

The aim of this section is to explain how objects are represented and allocated by the
Alsys Ada compiler for MC68OX0 machines and how it is possible to control this using
representation clauses.

The representation of an object is closely connected with its type. For this reason this
section addresses successively the representation of enumeration, integer, floating point,
fixed point, access, task, array and record types. For each class of type the representation
of the corresponding objects is described.

Except in the case of array and record types, the description for each class of type is
independent of the others. To understand the representation of an array type it is
necessary to understand first the representation of its components. The same rule applies
to record types.

Apart from implementation defined pragmas, Ada provides three means to control the
size of objects:

" a (predefined) pragma PACK, when the object is an array, an array component, a
record or a record component

" a record representation clause, when the object is a record or a record component

" a size specification, in any case.

For each class of types the effect of a size specification alone is described. Interference
between size specifications, packing and record representation clauses is described under
array and record types.

4.1 Enumeration Types

Internal codes of enumeration literals

When no enumeration representation clause applies to an enumeration type, the
internal code associated with an enumeration literal is the position number of the
enumeration literal. Then, for an enumeration type with n elements, the internal codes

18 Appendix F Version 5.3

are the integers 0, 1, 2,... n-1.

An enumeration representation clause can be provided to specify the value of each
internal code as described in [13.31. The Alsys compiler fully implements enumeration
representation clauses.

As internal codes must be machine integers the internal codes provided by an
enumeration representation clause must be in the range -231., 231-1.

Encoding of enumeration values

An enumeration value is always represented by its internal code in the program
generated by the compiler.

When an enumeration type is not a boolean type or is a boolean type with an
enumeration representation clause, binary code is used to represent internal codes.
Negative codes are then represented using two's complement.

When a boolean type has no enumeration representation clause, the internal code 0 is
represented by a succession of Os and the internal code 1 is represented by a succession of
is. The length of this pattern of Os or of Is is the size of the boolean value.

4.2 Integer Types

Predefined integer types

There are three predefined integer types in the Alsys implementation for MC68OX0
machines:

type SHORTSHORT INTEGER is range -2*7 .. 2**7 -1;
type SHORTINTEGER is range -2" * 15 .. 2"* 15 -1;
type INTEGER is range -2*"31 .. 2"'31 -1;

Selection of the parent of an integer type

An integer type declared by a declaration of the form:

type T is range L .. R;

is implicitly derived from a predefined integer type. The compiler automatically selects
the predefined integer type whose range is the shortest that contains the values L to R

Implementation -Dependent Pragmas 19

incluive.

Encoding of integer values

Binary code is used to represent integer values. Negative numbers are represented using
two's complement.

4.3 Floating Point Types

Predefined floating point types

There are two predefined floating point types in the Alsys implementation for MC68OX0
machines:

type FLOAT is
digits 6 range -(2.0 - 2.0**(-23))*2.0**127 .. (2.0 - 2.0"*(-23))*2.0"*127;

type LONG-FLOAT is
digits 15 range -(2.0 - 2.0**(-51))*2.0*1023 .. (2.0 - 2.0**(-51))*2.0*1023;

Selection of the parent of a floating point type

A floating point type declared by a declaration of the form:

type T is digits D [range L .. R];

is implicitly derived from a predefined floating point type. The compiler automatically
selects the smallest predefined floating point type whose number of digits is greater than
or equal to D and which contains the values L to R inclusive.

Encoding of floating point values

In the program generated by the compiler, floating point values are represented using
the IEEE standard formats for single and double floats.

The values of the predefined type FLOAT are represented using the single float format.
The values of the predefined type LONG-FLOAT are represented using the double float

20 Appendir F Version 5.3

format. The values of any other floating point type are represented in the same way as
the values of the predefined type from which it derives, directly or indirectly.

4.4 Fixed Point Types

Small ofa rixed point type

If no specification of small applies to a fixed point type, then the value of small is
determined by the value of delta as defined by [3.5.91.

A specification of small can be used to impose a value of small. The value of small is
required to be a power of two.

Implementation-Dependent Pragmas 21

Predefined fixed point types

To implement fixed point types, the Alsys compiler for MC68OX0 machines uses a set of
anonymous predefined types of the form:

type FIXED 8 is delta D range (-2"*07.1) *S.. 2"*07"S;
for FIXED_8'SMALL use S;

type FIXED 16 is delta D range (-2"*15-1)*S.. 2**15"S;
for FIXED_1 6'SMALL use S,

type FIXED.32 is delta D range (-2**31.1)*S .. 2"'31 *S;
for FIXED_32'SMALL use S,

where D is any real value and S any power of two less than or equal to D.

Encoding of fixed point values

In the program generated by the compiler, a safe value V of a fixed point subtype F is
represented as the integer:

V / FBASE'SMALL

4.5 Access Types

Collection Size

When no specification of collection size applies to an access type, no storage space is
reserved for its collection, and the value of the attribute STORAGE-SIZE is then 0.

As described in [13.21, a specification of collection size can be provided in order to
reserve storage space for the collection of an access type. The Alsys compiler fully
implements this kind of specification.

Encoding of access values.

Access values are machine addresses.

22 Appendir F Version 5.3

4.6 Task Types

Storage for a task activation

When no length clause is used to specify the storage space to be reserved for a task
activation, the storage space indicated at bind time is used for this activation.

As described in [13.21, a length clause can be used to specify the storage space for the
activation of each of the tasks of a given type. In this case the value indicated at bind time
is ignored for this task type, and the length clause is obeyed.

Encoding of task values.

Encoding of a task value is not described here.

4.7 Array Types

Size of an array subtype

The size of an array subtype is obtained by multiplying the number of its components by
the sum of the size of the components and the size of the gaps (if any). If the subtype is
unconstrained, the maximum number of components is considered.

The size of an array subtype cannot be computed at compile time

" if it has non-static constraints or is an unconstrained array type with non-static
index subtypes (because the number of components can then only be determined at
run time).

" if the components are records or arrays and their constraints or the constraints of
their subcomponents (if any) are not static (because the size of the components and
the size of the gaps can then only be determined at run time).

As has been indicated above, the effect of a pragma PACK on an array type is to suppress
the gaps and to reduce the size of the components. The consequence of packing an array
type is thus to reduce its size.

If the components of an array are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static, the compiler ignores any
pragma PACK applied to the array type but issues a warning message. Apart from this

Implementation-Dependent Pragmas 23

limitation, array packing is fully implemented by the Alsys compiler.

A size specification applied to an array type or first named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout of an array is as expected by
the application.

4.8 Record Types

Implicit components

In some circumstances, access to an object of a record type or to its components involves
computing information which only depends on the discriminant values. To avoid useless
recomputation the compiler stores this information in the record objects, updates it
when the values of the discriminants are modified and uses it when the objects or its
components are accessed. This information is stored in special components called
implicit components.

An implicit component may contain information which is used when the record object or
several of its components are accessed. In this case the component will be included in any
record object (the implicit component is considered to be declared before any variant
part in the record type declaration). There can be two components of this kind; one is
called RECORDSIZE and the other VARIANT INDEX.

On the other hand an implicit component may be used to access a given record
component. In that case the implicit component exists whenever the record component
exists (the implicit component is considered to be declared at the same place as the
record component). Components of this kind are called ARRAYDESCRIPTORs or
RECORD DESCRIPTORs.

a RECORD-SIZE

This implicit component is created by the compiler when the record type has a variant
part and its discriminants are defaulted. It contains the size of the storage space
necessary to store the current value of the record object (note that the storage effectively
allocated for the record object may be more than this).

The value of a RECORDSIZE component may denote a number of bits or a number of
storage units. In general it denotes a number of storage units, but if any component
clause specifies that a component of the record type has an offset or a size which cannot

24 Appendix F Version 5.3

be expressed using storage units, then the value designates a number of bits.

The implicit component RECORDSIZE must be large enough to store the maximum
size of any value of the record type. The compiler evaluates an upper bound MS of this
size and then considers the implicit component as having an anonymous integer type
whose range is 0.. MS.

If R is the name of the record type, this implicit component can be denoted in a

component clause by the implementation generated name R'RECORDSIZE.

a VARIANTINDEX

This implicit component is created by the compiler when the record type has a variant
part. It indicates the set of components that are present in a record value. It is used when
a discriminant check is to be done.

. ARRAY DESCRIPTOR

An implicit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous array subtype that depends on a discriminant
of the record. It contains information about the component subtype.

The structure of an implicit component of kind ARRAY DESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is interested in
specifying the location of a component of this kind using a component clause, he can
obtain the size of the component using the ASSEMBLY parameter in the COMPILE
command.

The compiler treats an implicit component of the kind ARRAYDESCRIPTOR as
having an anonymous array type. If C is the name of the record component whose
subtype is described by the array descriptor, then this implicit component can be denoted
in a component clause by the implementation generated name
C'ARRAYDESCRIPTOR.

, RECORD-DESCRIPTOR

An implicit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous record subtype that depends on a
discriminant of the record. It contains information about the component subtype.

The structure of an implicit component of kind RECORDDESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is interested in
specifying the location of a component of this kind using a component clause, he can

Implementation-Dependent Pragmas 25

obtain the size of the component using the ASSEMBLY parameter in the COMPILE
command.

The compiler treats an implicit component of the kind RECORDDESCRIPTOR as
having an anonymous array type. if C is the name of the record component whose
subtype is described by the record descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
C'RECORDDESCRIPTOR.

Size of a record subtype

Unless a component clause specifies that a component of a record type has an offset or a
size which cannot be expressed using storage units, the size of a record subtype is
rounded up to the a whole number of storage units.

The size of a constrained record subtype is obtained by adding the sizes of its

components and the sizes of its gaps (if any). This size is not computed at compile time

" when the record subtype has non-static constraints,

" when a component is an array or a record and its size is not computed at compile
time.

The size of an unconstrained record subtype is obtained by adding the sizes of the
components and the sizes of the gaps (if any) of its largest variant. If the size of a
component or of a gap cannot be evaluated exactly at compile time an upper bound of
this size is used by the compiler to compute the subtype size.

A size specification applied to a record type or first named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout of a record is as expected by
the application.

Alignment of a record subtype

When no record representation clause applies to its base type, a record subtype is even
byte aligned if it contains a component whose subtype is even byte aligned. Otherwise
the record subtype is byte aligned.

When a record representation clause that does not contain an alignment clause applies
to its base type, a record subtype is even byte aligned if it contains a component whose
subtype is even byte aligned and whose offset is a multiple of 16 bits. Otherwise the

26 Appendix F Version 5.3

record subtype is byte aligned.

When a record representation clause that contains an alignment clause applies to its base
type, a record subtype has an alignment that obeys the alignment clause. An alignment
clause can specify that a record type is byte aligned or even byte aligned.

Implemnentation-Dependent Pragmas 27

CHAPTER 5

IMPLEMENTATION-DEPENDENT COMPONENTS

The following forms of implementation-generated names [13.4(8)] are used to denote
implementation-dependent record components, as described in Section 4.8 in the
paragraph on indirect and implicit components:

C'OFFSET
R'RECORD SIZE
R'VARIANT INDEX
R'ARRAY DESCRIPTORs
R'RECORD DESCRIPTORs

where C is the name of a record component and R the name of a record type.

28 Appendix F Version 5.3

CHAPTER 6

ADDRESS CLAUSES

An address clause can be used to specify the address of an object, a program unit or an
entry.

6.1 Address Clauses for Objects

An address clause can be used to specify an address for an object as described in [13.5].
When such a clause applies to an object no storage is allocated for it in the program
generated by the compiler. The program accesses the object by using the address
specified in the clause.

An address clause is not allowed for task objects, for unconstrained records whose size is
greater than 8 kb, or for a constant.

Note that the function SYSTEM.VALUE, defined in the package SYSTEM, is available to
convert a STRING value into a value of type SYSTEM.ADDRESS, also, the IMPORT
attribute is available to provide the address of an external symbol. (Refer to Chapter 3
and section 2.3)

6.2 Address Clauses for Program Units

Address clauses for program units are not implemented in the current version of the
compiler.

6.3 Address Clauses for Entries

An address clause may be used to associate an entry with a UNIX signal. (See Application
Developer's Guide for detailed information.)

Implementation -Dependent Pragmas 29

CHAPTER 7

UNCHECKED CONVERSIONS

Unchecked type conversions are described in [13.10.21. The following restrictions apply
to their use.

Unconstrained arrays are not allowed as target types. Unconstrained record types
without defaulted discriminants are not allowed as target types. Access types to
unconstrained arrays are not allowed as target or source types. Note also that
UNCHECKED-CONVERSION cannot be used for an access to an unconstrained
string.

However, if the source and the target types are each scalar or access types, the sizes of the
objects of the source and target types must be equal.

If a composite type is used either as source type or as target type this restriction on the
size does not apply.

If the source and the target types are each of scalar or access type or if they are both of
composite type, the effect of the function is to return the operand.

In other cases the effect of unchecked conversion can be considered as a copy:

" If an unchecked conversion is achieved of a scalar or access source type to a
composite target type, the result of the function is a copy of the source operand.
The result has the size of the source.

" If an unchecked conversion is achieved of a composite source type to a scalar or
access target type, the result of the function is a copy of the source operand. The
result has the size of the target.

30 Appendix F Version 5.3

CHAPTER 8

INPUT-OUTPUT CHARACTERISTICS

In this part of the Appendix the implementation-specific aspects of the input-output
system are described.

8.1 Introduction
In Ada, input-output operations are considered to be performed on objects of a certain
file type rather than being performed directly on external files. An external file is
anything external to the program that can produce a value to be read or receive a value to
be written. Values transferred for a given file must be all of one type.

Generally, in Ada documentation, the term file refers to an object of a certain file type,
whereas a physical manifestaion is known as an external file. An external file is
characterized by

" its NAME, which is a string defining a legal path name under the current version of
the operating system

" its FORM, which gives implementation-dependent information on file
characteristics.

Both the NAME and the FORM appear explicitly as parameters of the Ada procedures
CREATE and OPEN. Though a file is an object of a certain file type, ultimately the
object has to correspond to an external file. Both CREATE and OPEN associate a
NAME of an external file (of a certain FORM) with a program file object.

Ada input-output operations are provided by means of standard packages ([141):

SEQUENTIAL 10 A generic package for sequential files of a single element type.

DIRECT 10 A generic package for direct (random) access files.

Implementation-Dependent Pragmas 31

TEXT10 A generic package for human-readable files (text, ASCII).

(Please note that trying to apply TEXT_IO.NAME or
TEXTIO.FORM to STANDARD-INPUT or
STANDARDOUTPUT will raise USEERROR. Though it
may surprise the user, [14.4(5)1 allows this behavior.)

10 EXCEPTIONS A package which defines the exceptions needed by the above

three packages.

The generic package LOW-LEVEL_10 is not implemented in this version.

The upper bound for index values in DIRECT_10 and for line, column and page numbers
in TEXT_1O is given by

COUNT'LAST = 2**31 -1

The upper bound for field widths in TEXT-IO is given by

FIELD'LAST = 255

8.2 The Parameter FORM

The parameter FORM of both the procedures CREATE and OPEN in Ada specifies the
characteristics of the external file involved.

The procedure CREATE establishes a new external file, of a given NAME and FORM, and
associates it with a specified program file object. The external file is created (and the file
object set) with a specified (or default) file mode. If the external file already exists, the
file will be erased. The exception USE ERROR is raised if the file mode is INFILE.

Example:

CREATE(F, OUT FILE, NAME => "MYFILE",
FORM = >
"WORLD = > READ, OWNER = > READWRITE");

The procedure OPEN associates an existing external file, of a given NAME and FORM,
with a specified program file object. The procedure also sets the current file mode. If
there is an inadmissible change of mode, then the exception USE ERROR is raised.

The parameter FORM is a string, formed from a list of attributes, with attributes

32 Appendix F Version 5.3

separated by commas. The string is not case sensitive (so that, for example. FF'!',E and
here are treated alike). (FORM attributes are distinct from Ada attributeL.) The
attributes specify:

" File protection

" File sharing

" File structure

" Buffering

" Appending

" Blocking

" Terminal input

The general form of each attribute is a keyword followed by = > and then a qualifier. The
arrow and qualifier may sometimes be omitted. The format for an attribute specifier is
thus either of

KEYWORD

CEYWORD = > QUALIFIER

Implementation-Dependent Pragmas 33

